
**Rinnai Commercial - Solar Thermal**

**Rinnai**

**virtu**<sup>HOT</sup>

# The Easy Choice for Commercial Hot Water Solutions

Rinnai offers both Virtu<sup>HOT</sup> evacuated tube and flat plate collectors, each with specific benefits to suit your application. Providing you with years of high energy performance, low maintenance and reduced energy costs.



All Rinnai solar thermal products are perfectly aligned with our Hydrogen blend ready 20% and renewable liquid fuel ready combustion technologies.

Put simply, the Virtu<sup>HOT</sup> solar thermal design will gain more solar energy from less space whilst the Rinnai continuous flow water heater will modulate to use less energy whilst creating more plant room space.



**Virtu<sup>HOT</sup> - more energy, less space**

**Rinnai - Less energy required,  
more space gained**

**The perfect DHW solution to  
lower carbon footprint.**

# Renewable hot water solutions

Solar technology is designed with efficiency and effectiveness in mind.

The core design of Virtu<sup>HOT</sup> has benefited from multiple workshops with experienced installers, whose valuable insights have been integrated into design and innovation for transportation, installation, and maintenance. From Virtu's low-profile design to the modular assembly, our innovation keeps life simple for installers and maintenance teams.

What is unique about **virtu<sup>HOT</sup>** and **Rinnai** products?

## **Saves more carbon**

Virtu saves up to 3.5x more carbon per m<sup>2</sup> compared to conventional solar technology. This combined with the Rinnai water heating system will save carbon created through traditional storage-based systems, mainly due to heat losses and over-sizing. Rinnai water heaters will modulate to 4.4kW therefore only using gas to boost the temperature - harnessing renewable gains and not compromising on performance.

## **Greater returns**

Virtu delivers up to 50% greater financial returns per m<sup>2</sup> in comparison to conventional solar technology. Rinnai intelligent hot water systems can save more than 30% in operational running costs when compared to storage systems.

## **Reduces risk**

Virtu protects customers from energy prices and exposure to ever-increasing energy and climate change legislation. Rinnai only uses the gas needed to boost the water temperature and all water heaters are hydrogen blend ready 20% and Bio LPG ready.

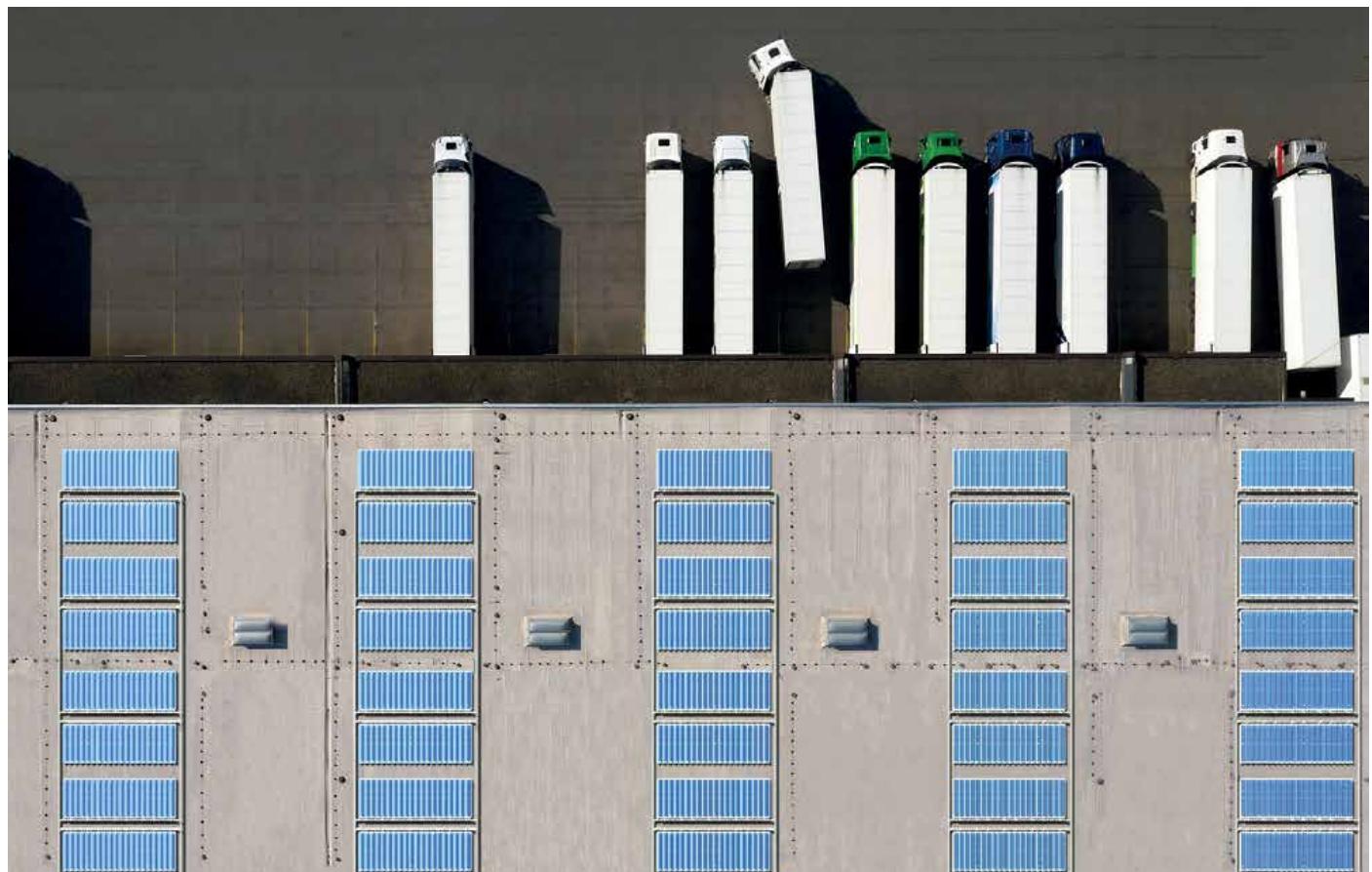
## **Lower installation and maintenance costs**

A design-led architecture and turnkey solution makes Virtu easy to install and keeps maintenance to a minimum; backed by a warranty of up to 10 years. Rinnai water heaters come with a warranty of upto 10 years, are lightweight (one-man lift), can be cited internally or externally, and have a compact design (670x470x276mm). We have created a low maintenance, high performance system that lowers carbon footprint without compromising performance.

# Rinnai and Virtu<sup>Hot</sup> - Unrivalled performance

## Unrivalled performance in any environment

- Reduce scope 1 emissions using 100% renewable solar heat
- Higher energy-density compared to market-leading solar thermal panels


## Versatile and easy to install

- Simple modular assembly
- Integrated mounting with self ballasting: no need for roof penetration
- Compatible with any roof type
- Low profile: 26.5 cm installed height

## Designed for Commercial Scale

### Ideal for:

- Multi-dwelling residential
- Manufacturing
- Food & beverage
- Hospitality & leisure



# Rinnai and Virtu<sup>Hot</sup> - Unrivalled performance

## Low install cost

- Simple modular assembly
- Lifted to roof pre or post assembly
- Fits in service elevators
- Use of a crane not necessary
- Mounting included
- Pipe manifolds included



## Compatible with any roof type

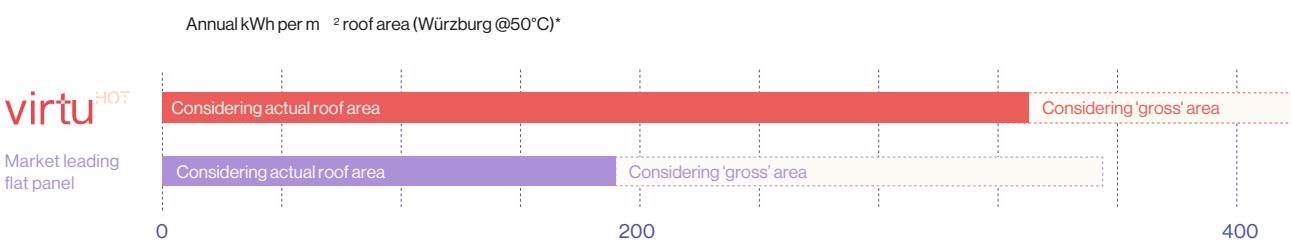
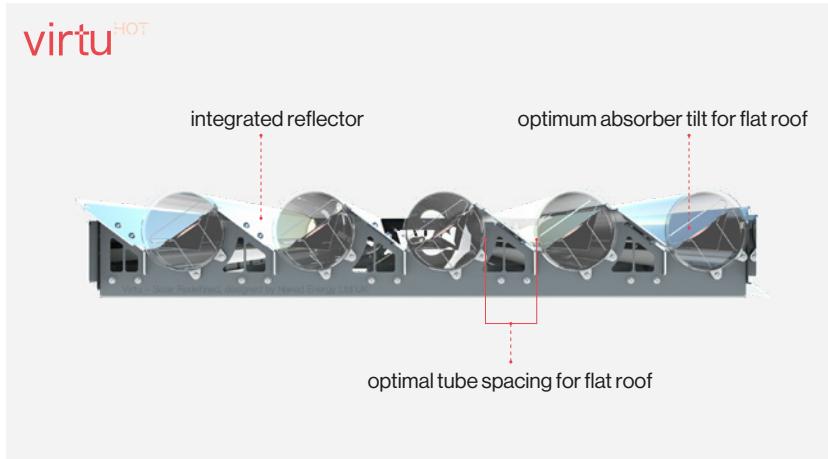
6 X M8 mounting slots provide compatibility with, for example, clamp and rail systems

Suitable for:

- Raised seamed roofs
- Trapezoidal roofs
- Sarnafil roofs
- Nicholson fittings
- Pitched roofs
- Façade mounting

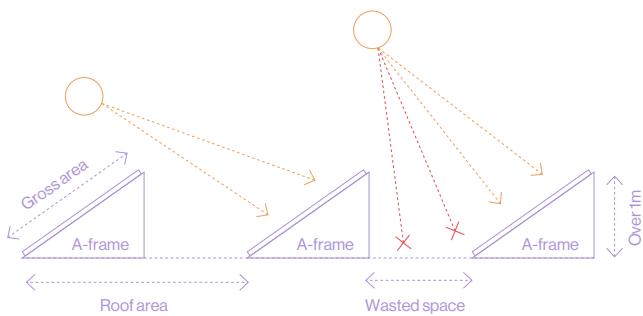
## Low Profile

- 26.5 cm height from roof/façade
- Simplifies planning permission
- Low wind shear



## Self ballasting

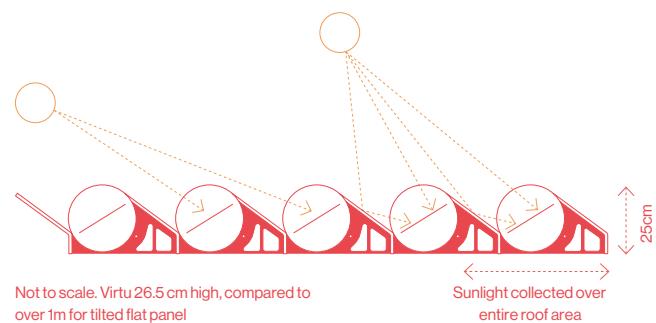
In-built ballast trays can be loaded with concrete blocks.

- No need for roof penetration
- No need for additional mounting
- Suitable for:
  - Felt roofs
  - EPDM roofs
  - Rubber roofs
  - Sarnafil roofs


# Flat roof performance

Virtu<sup>HOT</sup> maximises energy density on a flat roof.




## Standard panels waste space

- Panels/collectors tilted towards the sun on A-frames
- Spaced to avoid self shading in winter
- Roof area required is larger than panel gross area



## No wasted space with VirtuHOT

- Absorber plates are tilted to optimum angle within tubes
- Integrated reflector captures sunlight in space between tubes
- More energy, less space

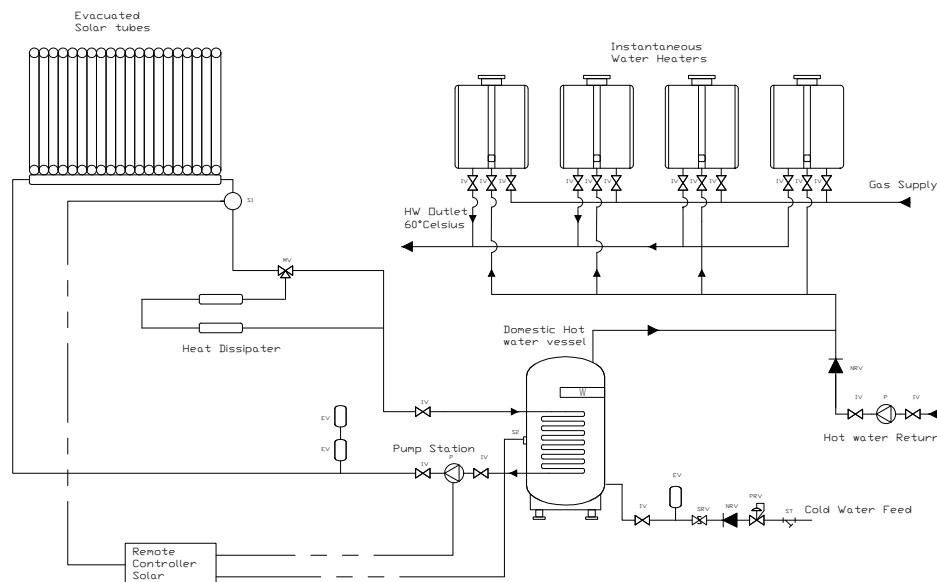


\*Chart notes

> All annual kWh values are calculated using industry-standard Scenocalc tool, taking Würzburg as location, 50°C fluid temperature and 0° azimuth.

> Virtu<sup>HOT</sup> kWh calculation takes parameters from the Virtu<sup>HOT</sup> Solar Keymark certificate. Calculation is made at 0° inclination. Service corridor allowance is considered in roof area calculation (see layout on page 6).

> Flat panel kWh calculation takes parameters from Viessmann Vitosol 200 FM Solar Keymark certificate. Similar results are achieved by other best-in-class panels. Calculation is made at 15° inclination, by interpolating between 0° and 25° inclination. Space between panels is calculated using Viessmann Technical Guide - Solar Thermal Systems. The 15° inclination has been chosen to produce best trade off between gross area and roof area performance.


# Rinnai + Virtu<sup>HOT</sup> - How does it work?

**virtu<sup>HOT</sup>**

- Virtu<sup>HOT</sup> generates **5% more** energy per m<sup>2</sup> than the alternative ETC
- Reducing more carbon + operating cost over a given space
- Virtu<sup>HOT</sup> costs **14% less** per m<sup>2</sup> than the alternative ETC

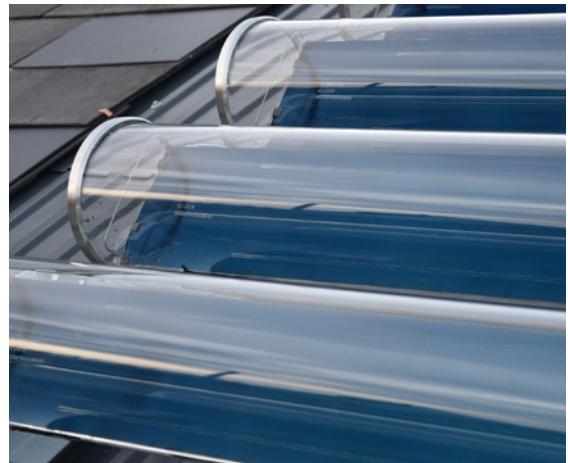
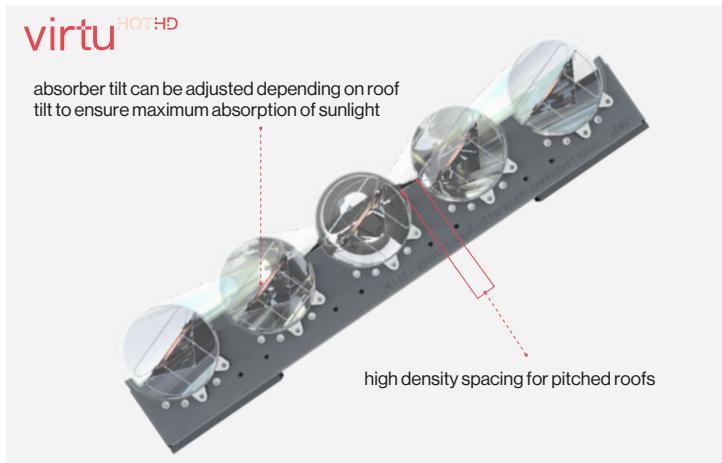
**Rinnai**

- Rinnai modulates gas burner 58kW - 4.4kW in relation to pre-heat solar gains.
- Rinnai water heaters are also ready for low carbon fuels like blended Natural gas and BioLPG.
- Reduces carbon footprint when displacing traditional storage based systems **by up to 30%**
- Rinnai systems are proven to reduce operational expenditure versus traditional storage

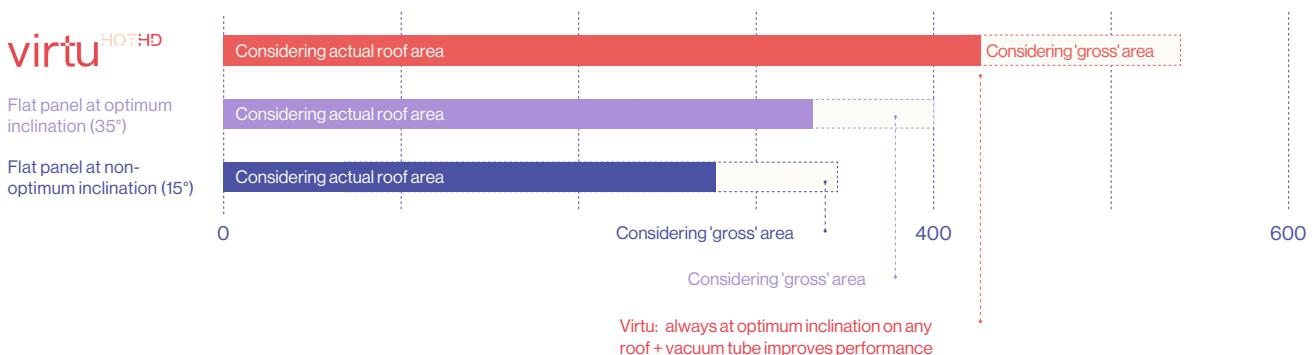


## Typical holiday park, ablution block - projected savings

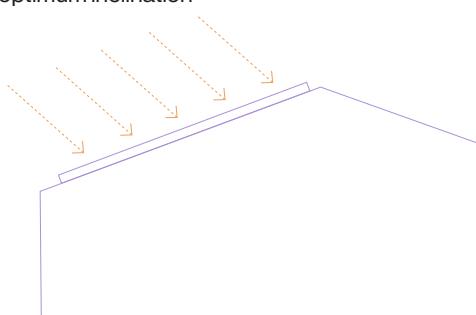
|                              | Rinnai + VirtuHot |
|------------------------------|-------------------|
| Total Storage Capacity (L)   | 500               |
| Solar Cylinder Capacity (L)  | 500               |
| Number of Water Heaters      | 4                 |
| Number of Storage Vessels    | 1                 |
| Peak Water Usage (L)         | 2000              |
| Peak Usage Period (Hrs)      | 1                 |
| Number of Peak Usage Periods | 2                 |
| Gas Type                     | LPG               |



|                              | Direct Fired Approach Only |
|------------------------------|----------------------------|
| Total Storage Capacity (L)   | 0                          |
| Solar Cylinder Capacity (L)  | 0                          |
| Number of Water Heaters      | 4                          |
| Number of Storage Vessels    | 0                          |
| Peak Water Usage (L)         | 2000                       |
| Peak Usage Period (Hrs)      | 1                          |
| Number of Peak Usage Periods | 2                          |
| Gas Type                     | LPG                        |

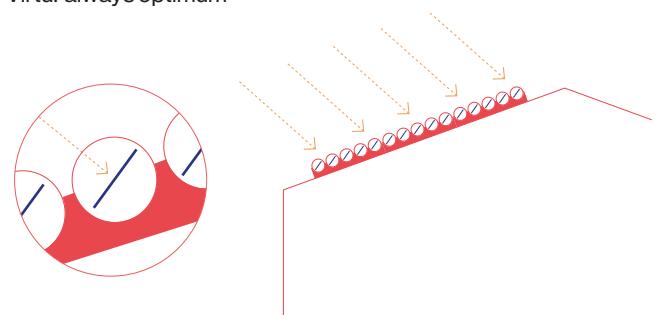
**Year 1 - Estimated Carbon Footprint - Down 10%**


**Year 1 - Estimated Operational Expenditure - Down 7%**

# Pitched roof performance


Sister product Virtu<sup>HOT</sup> HD is designed for pitched roofs. Very few roofs are optimally angled for solar collectors. Virtu<sup>HOT</sup> HD has the flexibility to tilt absorbers towards the sun, giving optimum performance on any roof inclination.



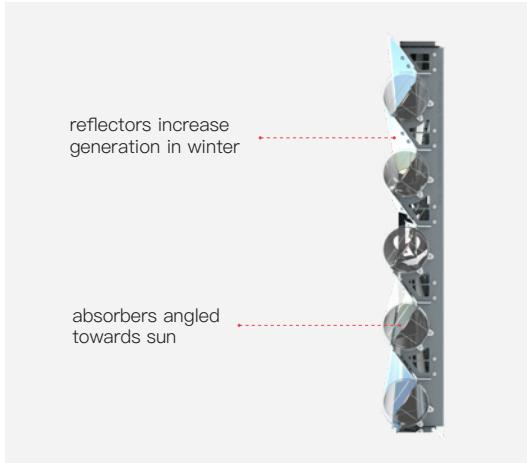

Annual kWh per m<sup>-2</sup> roof area (Würzburg @ 50°C)



Flat panel: non-optimum inclination



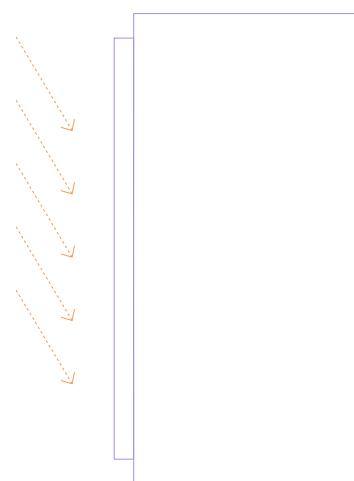
Virtu: always optimum




## \*Chart notes

- > All annual kWh values are either taken directly from Solar Keymark datasheets, or calculated using the industry-standard Scenocalc tool, taking Würzburg as location, 50°C fluid temperature and 0° azimuth.
- > Virtu<sup>HOT</sup> HD kWh numbers are taken directly from [Virtu HOT HD Solar Keymark certificate](#), since absorbers can be adjusted to produce optimal result on any roof inclination between 15° and 45°. Service corridor allowance is considered in roof area calculation (see layout on page 6).
- > Flat panel kWh calculation takes parameters from Viessmann [Vitosol 200 FM Solar Keymark certificate](#). Similar results are achieved by other best-in-class panels. Values for 35° inclination are taken directly from Solar Keymark certificate. Values at 15° inclination are calculated using Scenocalc, interpolating between 0° and 25° inclination. For roof area calculation, similar clearance to Virtu<sup>HOT</sup> HD is assumed.

# Vertical façade performance


Ever think of using your façade to produce solar energy whilst introducing a unique architectural feature and broadcasting your green credentials? Virtu<sup>HOT</sup> unique design means it generates nearly as much energy on a south-facing façade as it does on a rooftop.



Annual kWh per m<sup>2</sup> façade area (Würzburg @50°C)\*



Flat panels are non-optimum in both summer and winter



Virtu: Absorbers tilted upwards for optimal summer performance

Virtu: Reflectors provide boost to winter output

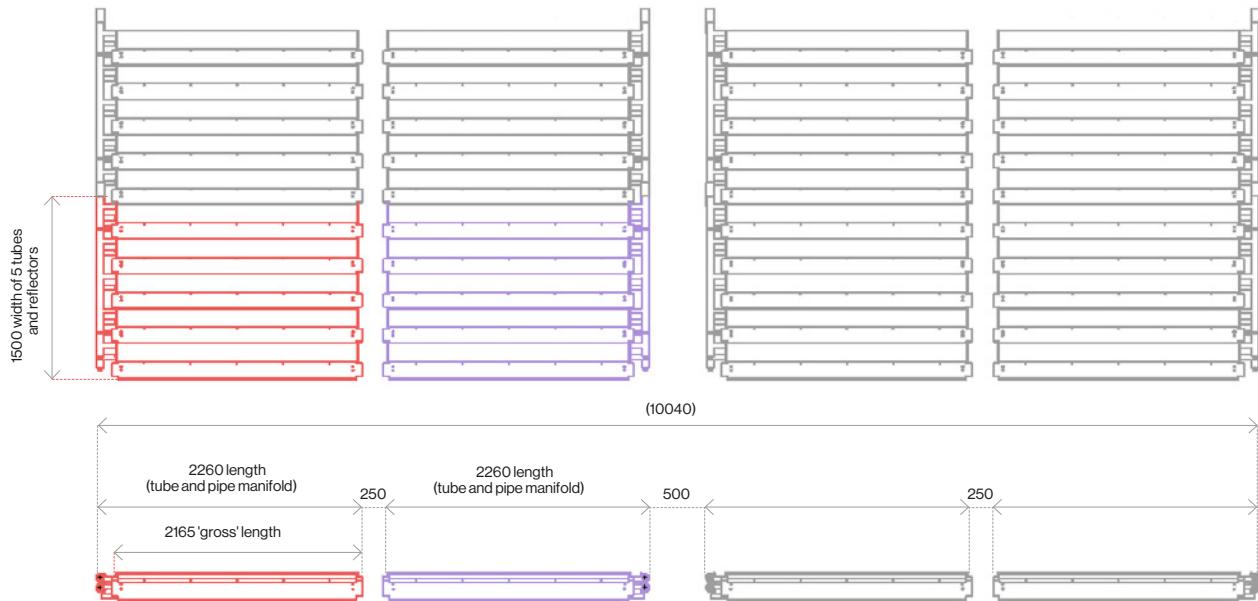


\*Chart notes

> All annual kWh values are calculated using industry-standard Scenocalc tool, taking Würzburg as location, 50°C fluid temperature and 0° azimuth.

> Virtu<sup>HOT</sup> kWh calculation takes parameters from the [Virtu<sup>HOT</sup> Solar Keymark certificate](#). Calculation is made at 90° tilt. The IAMs have been inverted to account for the orientation of the collector on the façade. Service corridor allowance is considered in façade area calculation (see layout on page 6).

> Flat panel kWh calculation takes parameters from Viessmann Vitosol 200 FM Solar Keymark certificate. Similar results are achieved by other best-in-class panels. Calculation is made at 90° tilt. For roof area calculation, similar clearance to Virtu<sup>HOT</sup> is assumed.


## virtu<sup>HOT</sup>

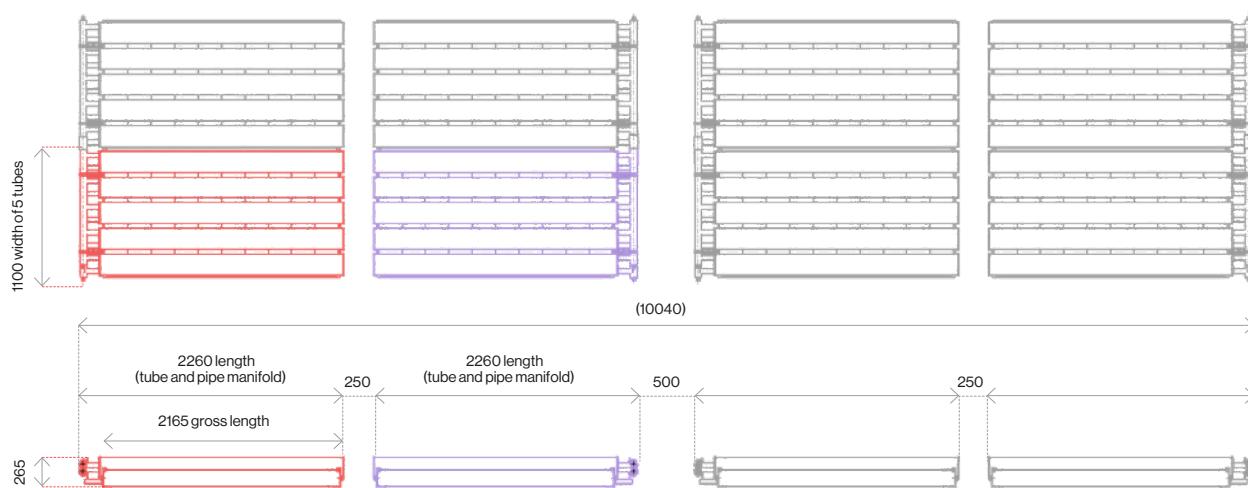
Includes integrated reflector. Suitable for :

- Flat roofs
- Vertical façades
- Low pitch roofs (< 15° tilt)
- Installed in sets of 5 tubes
- Sets connected together to form an array of any size
- Can be configured with manifolds on left or right side

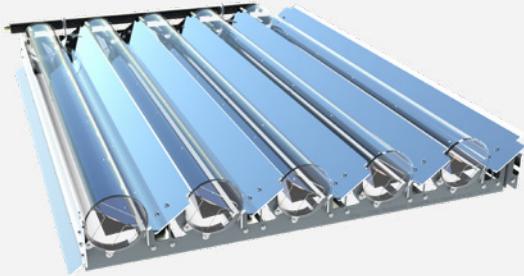


1500 width of 5 tubes and reflectors




## virtu<sup>HOTHD</sup>

Higher density tubes without reflector. Suitable for :


- Pitched roofs
- Flat roofs in very low latitudes (< 30 ° from equator)
- Installed in sets of 5 tubes
- Sets connected together to form an array of any size
- Can be configured with manifolds on left or right side



1100 width of 5 tubes



**virtu<sup>HOT</sup>**



**virtu<sup>HOT HD</sup>**



| Model | Virtu <sup>HOT</sup> | Virtu <sup>HOT HD</sup> |
|-------|----------------------|-------------------------|
|-------|----------------------|-------------------------|

**SINGLE TUBE DIMENSIONS** (refer to drawing on previous page)

|                                                                  |                                                                                                                                   |                             |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Gross length                                                     | 2165 mm                                                                                                                           | 2165 mm                     |
| Gross width (single tube)                                        | 300 mm                                                                                                                            | 220 mm                      |
| Gross height                                                     | 265 mm                                                                                                                            | 265 mm                      |
| Absorber area                                                    | 0.324 m <sup>2</sup>                                                                                                              | 0.324 m <sup>2</sup>        |
| Gross area                                                       | 0.65 m <sup>2</sup>                                                                                                               | 0.47 m <sup>2</sup>         |
| Roof area occupied<br>(incl. pipe manifold and service corridor) | 0.78 m <sup>2</sup>                                                                                                               | 0.57 m <sup>2</sup>         |
| Total weight (wet)                                               | 19.1 kg                                                                                                                           | 14.8 kg                     |
| Roof loading                                                     | 22.9 kg/m <sup>2</sup>                                                                                                            | 23.7 kg/m <sup>2</sup>      |
| Additional ballast                                               | Up to 21.7 kg (7 x 3.1 kg) of ballast blocks can be added per tube. Choose additional ballast based on wind loading calculations. |                             |
| Absorber plate angle                                             | 35°                                                                                                                               | Adjustable: 20°, 0° or -20° |

**SET OF 5 CONNECTED TUBES DIMENSIONS** (refer to drawing on previous page)

|             |         |         |
|-------------|---------|---------|
| Gross width | 1500 mm | 1100 mm |
|-------------|---------|---------|

**MATERIALS**

|                |                  |
|----------------|------------------|
| Absorber plate | Aluminium/copper |
| Glass          | Borosilicate 3.3 |

**SINGLE TUBE HEAT OUTPUT**

|                     |       |       |
|---------------------|-------|-------|
| Peak thermal output | 400 W | 290 W |
|---------------------|-------|-------|

**OPERATING CONDITIONS**

|                                |                                     |
|--------------------------------|-------------------------------------|
| Flow rate range                | 0.1–1 l/min                         |
| Maximum pressure               | 6 bar                               |
| Fluid output temperature range | 10 – 90 (°C)                        |
| Manifold diameter (external)   | 22 mm                               |
| Manifold connections           | DN16 male (3/4" flat face threaded) |
| Heat transfer fluid            | Water–Glycol Solution               |
| Mounting slots                 | 6 x M8 slots per set of 5 tubes     |

Annual performance in Solar Keymark standard locations

|                   | ATHENS |      |      | DAVOS |      |      | STOCKHOLM |      |      | WÜRZBURG |      |      |
|-------------------|--------|------|------|-------|------|------|-----------|------|------|----------|------|------|
| Fluid temperature | 25°C   | 50°C | 75°C | 25°C  | 50°C | 75°C | 25°C      | 50°C | 75°C | 25°C     | 50°C | 75°C |

Flat roof (0° inclination) – Virtu<sup>HOT</sup><sup>1</sup>

| kWh per tube                      | 567 | 474 | 381 | 439 | 355 | 277 | 314 | 244 | 183 | 353 | 277 | 208 |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| kWh per m <sup>2</sup> gross area | 857 | 717 | 575 | 675 | 547 | 426 | 484 | 375 | 281 | 544 | 426 | 320 |
| Annual efficiency (%)             | 54% | 45% | 36% | 50% | 41% | 32% | 49% | 38% | 29% | 50% | 39% | 29% |

Pitched roof (15° – 45° degree inclination, south facing) – Virtu<sup>HOT HD</sup><sup>2</sup>

| kWh per tube                      | 492  | 391 | 295 | 417 | 326 | 245 | 300 | 224 | 159 | 325 | 243 | 171 |
|-----------------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| kWh per m <sup>2</sup> gross area | 1047 | 832 | 628 | 887 | 694 | 521 | 639 | 476 | 338 | 691 | 516 | 365 |
| Annual efficiency (%)             | 59%  | 47% | 36% | 55% | 43% | 32% | 56% | 42% | 30% | 56% | 42% | 30% |

Vertical Façade (90° degree inclination, south facing) – Virtu<sup>HOT</sup><sup>3</sup>

| kWh per tube                      | 389 | 304 | 226 | 405 | 328 | 260 | 287 | 223 | 170 | 283 | 216 | 160 |
|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| kWh per m <sup>2</sup> gross area | 598 | 467 | 348 | 623 | 505 | 400 | 441 | 344 | 261 | 436 | 332 | 246 |
| Annual efficiency (%)             | 55% | 43% | 32% | 51% | 41% | 33% | 51% | 40% | 30% | 50% | 38% | 28% |

Table notes

- Calculated using industry-standard Scenocalc tool, taking input parameters from Virtu<sup>HOT</sup> Solar Keymark datasheet
- Values taken directly from Virtu<sup>HOT</sup> HD Solar Keymark datasheet
- Calculated using industry-standard Scenocalc tool, taking input parameters from Virtu<sup>HOT</sup> Solar Keymark certificate. IAMs are inverted to account for collector orientation.

Guide to calculations for building regulations / compliance, for example SBEM, FSAP, LEED

SBEM calculations should take the Solar Keymark values according to EN 12975–2 (table below). Tilt should be set to the roof inclination.

|                                   | virtu <sup>HOT</sup>                     | virtu <sup>HOT HD</sup>                  |
|-----------------------------------|------------------------------------------|------------------------------------------|
| Area                              | 0.65 m <sup>2</sup> per tube             | 0.47 m <sup>2</sup> per tube             |
| Zero-loss efficiency ( $\eta_0$ ) | 0.39                                     | 0.56                                     |
| First-order coefficient (a1)      | 1.3 W/(m <sup>2</sup> K)                 | 2.06 W/(m <sup>2</sup> K)                |
| Second-order coefficient (a2)     | 0.006 W/(m <sup>2</sup> K <sup>2</sup> ) | 0.007 W/(m <sup>2</sup> K <sup>2</sup> ) |
| Incidence angle modifier (IAM)    | 1.8                                      | 1.46                                     |

FSAP calculations should take a corrected zero-loss efficiency to account for the fact that Virtu<sup>HOT</sup> has been tested at a solar incidence angle that is not perpendicular to the absorber (table below). Corrected zero-loss efficiency has been calculated as  $\eta_0 \times \text{IAM} (35) \times \cos(35)$  for Virtu<sup>HOT</sup>, and  $\eta_0 \times \text{IAM} (20) \times \cos(20)$  for Virtu<sup>HOT HD</sup>.

Tilt should be set to 35° for flat roofs, the roof inclination for pitched roofs, and 55° for vertical façades

|                                   | virtu <sup>HOT</sup>         | virtu <sup>HOT HD</sup>      |
|-----------------------------------|------------------------------|------------------------------|
| Area                              | 0.65 m <sup>2</sup> per tube | 0.47 m <sup>2</sup> per tube |
| Zero-loss efficiency ( $\eta_0$ ) | 0.582                        | 0.605                        |
| First-order coefficient (a1)      | 1.3 W/(m <sup>2</sup> K)     | 2.06 W/(m <sup>2</sup> K)    |

Guide to inputting Virtu<sup>HOT</sup> into simulation software, e.g. Polysun, Tsol, EnergyPro, Scencalc

When using more sophisticated simulation software, be sure to use the full parameter set from the Solar Keymark datasheets Virtu<sup>HOT</sup> or Virtu<sup>HOT HD</sup>, and take the full IAM into account. **The collector tilt should be set to the roof inclination.** For vertical façades, the collector is rotated through 180 degrees.

# Rinnai + Virtu<sup>HOT</sup> Hybrid

Rinnai offers the market leading Virtu<sup>HOT</sup> evacuated tube collectors combined with energy saving and carbon reducing Bio LPG ready and hydrogen blend ready 20% water heaters.

These market leading technologies will ensure that solar gains are maximised and fuels for combustion are minimised - without compromising system performance.



## System Performance Virtu<sup>HOT</sup> + Rinnai



Assume Max, and continuous flow from solar

| Start Temperature | Preheat Solar System | Gas System top up | Energy from Gas in kW | Final Temperature | Savings in Gas |
|-------------------|----------------------|-------------------|-----------------------|-------------------|----------------|
| 10.0              | Rise 0 @             | Rise 50 @         | 55.7                  | 60.0              | 0.00%          |
| 10.0              | Rise 10 @            | Rise 40 @         | 44.6                  | 60.0              | 20.00%         |
| 10.0              | Rise 20 @            | Rise 30 @         | 33.4                  | 60.0              | 40.00%         |
| 10.0              | Rise 30 @            | Rise 20 @         | 22.3                  | 60.0              | 60.00%         |
| 10.0              | Rise 40 @            | Rise 10 @         | 11.1                  | 60.0              | 80.00%         |

Assume solar cylinder size 300, peak flow l/h @ 900, total energy per peak in kwh 52.25



| Start Temperature | Solar cylinder 300 Litre | Gas Energy in Solar cylinder top up | Total Energy top up from gas kwh | Final Temperature | Savings in Gas per peak |
|-------------------|--------------------------|-------------------------------------|----------------------------------|-------------------|-------------------------|
| 10.0              | Rise 20 @                | 7.0                                 | 45.3                             | 60.0              | 13.3%                   |
| 10.0              | Rise 30 @                | 10.5                                | 41.8                             | 60.0              | 20.00%                  |
| 10.0              | Rise 40 @                | 13.9                                | 38.3                             | 60.0              | 26.67%                  |
| 10.0              | Rise 50 @                | 17.4                                | 34.8                             | 60.0              | 33.33%                  |

## Hydrogen | Hybrids | Heat Pumps



To see how these combinations can impact your projects carbon footprint contact us today on **0300 373 0660** or scan the QR code.



Rinnai can offer the complete package, designed with capital expenditure, operational expenditure and carbon reductions in mind. We can supply the complete solution.

**Simply scan the QR code and ask us a question!**

## Notes



**Rinnai UK**, 9 Christleton Court, Runcorn, WA7 1ST

**Tel:** 0300 373 0660 / [www.rinnaiuk.com](http://www.rinnaiuk.com)

**Rinnai London**, The Building Centre, 26 Store Street, London WC1E 7BT

**Tel:** 0300 373 0660 / [www.rinnaiuk.com](http://www.rinnaiuk.com)



Rinnai UK Ltd



@rinnai\_uk



Rinnai UK

A product by

**Naked Energy.**

nakedenergy.com  
commercial@nakedenergy.com

**Rinnai**